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Trielinie Cell Parameters from One Crystal Setting 
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Chemistry Department, King's College, London, W.C.2, England 

(Recei~,,ed 13 January 1966) 

A general approach to determining triclinic cell parameters from one single-crystal setting is described, 
which has advantages over the method of angular lag. The procedure has been developed graphically, 
using a few chosen reflexions, but is also programmed for least-square computation, when a greater 
number of reflexions may be considered. 

Introduction 

In examining compounds of particular chemical inter- 
est one is frequently presented with ill-formed crystals 
of low stability. In consequence, there are no faces to 
aid orientation, while time permits only a limited num- 
ber of photographs to be taken before decomposition 
occurs. Buerger (1942) prescribes an angular lag pro- 
cedure, but his treatment suffers from the practical de- 
fect that it requires two superposed Weissenberg expo- 
sures (zero and first layer), as well as depending upon 
measurements involving low index reflexions of type 
h00, h01 (if oscillating about the c axis, for example) 
which may very well be unobservedly weak. The present 
method involves measurements between general hkl 
reflexions and requires only that there be taken one 
oscillation photograph, one zero layer and one first 
layer equi-inclination Weissenberg photograph. The 
use of generalized Patterson and electron-density syn- 
theses may then elucidate the essential features of the 
structure. Indeed, if the crystal is very unstable, an 
oscillation photograph plus a 100 ° first layer Weissen- 
berg photographs is sufficient to define cell parameters. 
Another advantage of the present procedure is that it 
works equally well whether or not the film holder is 
split into halves, as is customary in some forms of low 
temperature integrating cameras (e.g. Wiebenga & 
Smits, 1950; Kreuger, 1955). 

Geometrical procedure 

Let a crystal oscillate about the c axis. G may be 
measured from an oscillation photograph, and ~a, ~b 
and ),* are best measured from the zero layer Weissen- 
berg photograph. Now consider the reciprocal lattice 
(Fig. 1) where O is the true origin and D the origin 
of the nth layer projected down to N. 

ND is perpendicular to the a'b* plane, and so cor- 
responds to the direction of the c axis. 

DP is drawn perpendicular to Oa* and QN perpen- 
dicular to DP. QN will be the direction of the b axis. 

Thus blVc = ~; therefore QPN = Q]gD = 180 ° - ~ and 
tan Q P N = t a n  (180 ° - ~ ) = - t a n  a = D P / P N = n G / 6 b  
where 60 is the shift of the nth layer origin perpendicular 
to Oa*. 

Now the angular distance, ~01, between any two re- 
flexions hlkll and hzkzl passing through the sphere of 
reflexion is readily measured from an n-layer equi- 
inclination photograph, e.g. 2 between l i l  and i21 in 
Fig. 2. It will, in general, differ from the angle between 
hlklO and h2k20 because of the layer origin displace- 
ment. 

We may thus construct on the nth layer of the reci- 
procal lattice the locus of points (a circle) at which the 
chord, PIP2 (Fig. 3), subtends the angle fp~. When rpl 
< 90 ° this is most accurately achieved by joining P~P2, 
making P2X perpendicular to P1P2 and XPLP2 equal 
to 90-rp~. The bisector, U, of PIX is then the centre 
of the required circle. If rp2 > 90 ° (say) then the angle 
½(180°-~p2) is constructed at P3 and P4, and two sides 
of the resultant triangle are bisected to give the centre, 
V, of the circumscribing circle. 

Repetition for another pair of reflexions, angle rp;, 
results in intersecting circles, and discrimination be- 
tween the two points of intersection may be made by 
reference to a third pair of reflexions, angle ~0~, to ob- 
tain the projection of the displaced origin, N'. 

6b, perpendicular to Oa*, may then be measured and 
the direct angle a calculated. The best accuracy is ob- 
tained when the circles intersect close to right angles. 

Computational procedure 

The solution of the precise analytical expression is 
difficult, and a quickly converging iterative method is 
used. 

Let the nth layer origin shifts parallel to the a* and 
b* axes (Fig. 4) be nA and nB (6o then equals nB sin ),*, 
etc.). 

We may compute (P1P2) z in two ways to equal 

(h2 -- ht)Za 2 + (k2 - kl)Zb 2 

+ 2(h2- hl)(k2- kl)ab cos y* (1) 
o r  

~12+a2 2 2 "2--2 - l'~1 a2. cos ~01 (2) 
where 

~2 = (hla + hA) z + (klb + nB) 2 

and similarly for ~2. 
+ 2(hla + nA)(klb +nB) cos ),* 
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Equating and gathering terms leads to equations of 
the form 

A x  + B y =  Co, 
where 

Co = ( -  hlh2a 2 -  k lkzb 2 -  hlk2ab cos y* 

1/22~2 7" -- hzk~ab cos y*) + cos ~ .  r ~ ~2 - 2n2AB cos 

x =  n( (hla + h2a + k l b cos 7* + k2b cos 7*) + nA } 

y = n{(hla cos 7* + h2a cos 7" + kxb + k2b) + nB}. 

There will be several such equations, depending on 
how many angular distances are measured. Commen- 
cing with rough values, Ao, Bo, for A and B, we may 
calculate C c = A o x + B o y  so that 

() A C = C o - C e =  ~8~ C- AA + -aB- AB 

whence 
X A C . x  

AA - ; etc. 
.~ x 2 

The strategy is to choose solutions, A0 and B0, com- 

between major rounds. At this point the resultant A 
and B values are output, together with the angles c¢ 
and ft. In addition, the final calculated input angles, 
~0e, are printed out for comparison with the measured 

values employed. 
In the program, written in Extended Mercury Auto- 

code for the University of London Atlas Computer, 
starting values for A and B have been written in as 
0.001 and 0.001. Provided that at least eight values of 
¢p are introduced, which have values in the range 70- 
110 ° (so that cos ~0 is not too large) only about five 
rounds of major refinement are needed. With ~0 values 
around 40 ° some twenty rounds of refinement may be 
needful. 

Accuracy 

The accuracy obtainable is exemplified by some data, 
summarized in Table 1, relating to copper(II) sulphate 
pentahydrate which was oscillated in turn about each 

~ v 
pute Co, x and y, and to derive improved A and B . \ ~, 
values by three minor rounds of refinement, so that ~ ~ _ i  e 

! t 

AI = A o + A 1 ,  etc. At this point Co, x and y are recalcu- , , 

lated (as they depend upon the magnitude of A and B) ' ' 
and another three rounds of refinement are carried out. , , ½(~80"-,2) 
By such an iterative process A and B are improved - " - - L  _ 
until they are no longer subject to significant changes " ~  -~,2_'X.~ ~_ -~-.7" P3 

C C" / / " ~  ~ L~b" 

s ~ ~ 6 "  2 

h 1 • 

~ b  " Fig. 3. nth layer of reciprocal lattice, showing constructions to 
obtain the projected origin, N'. 
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Fig. 1. General view of reciprocal lattice. 
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Fig.2. Upper half of first layer equi-inclination Weissenberg Fig.4. nth layer of reciprocal lattice, showing a typical triangle 

photograph, used in computing the projected origin, N'. 
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Table 1. Data for CuSO4.5H20 
Experimental  values obta ined Graphical  & p r o g r a m m e d  angles C) 

by angular  lag about  axis below ~t~ ~ ,  ]~g ,Sp yg 
a axis - -  - -  107.4 108"1 76.8 
b axis 97.1 97.7 - -  - -  77.1 
c axis 97.4 97.5 107-3 107.2 - -  

Li tera ture  values 97"6 107"2 77.6 

~P 
77.9 
76.8 

principal axis after being set by the procedure of 
Brooker & Nuffield (1966). More detailed information 
is given for one axis in Table 2. In general the graphical 

Table 2. Comparison of inter-reflexion angles, ~Om, meas- 
ured with a ruler and those, (pc, calculated from the final 

cell parameters deduced by programmed angular lag 
Values marked  * were used for graphical  evaluat ion 

h k l h k / ~om ~oc 
0 3 1 1 0 1 85"5 ° 85"4 ° 
0 3 1 1 - 1 1 108.0 107.7 
0 3 l 0 0 1 67"0 66"7 
0 2 l 1 0 1 81"0 81"0 
0 2 1 l - 1  1 103-0 103.2 

*0 l 1 1 0 1 69"6 69"6 
*0 l 1 1 - 1  l 92-0 91 "9 

1 2 1 0 - 1  l 95"5 95"5 
1 2 l 0 - 2  l I l l . 0  l l l - 2  

*l 1 1 0 - 1  1 76"6 76"7 
1 1 1 0 - 2  l 92"0 92"4 

*0 0 I 0 - 1  1 71"5 71"5 
0 0 1 0 - 2  1 87"5 87"3 

- 1  - 3  1 - 1  0 l 85.0 84"5 
- 1  - 2  1 - 1  0 1 72.0 71 "5 
- 1  - 2  1 - 1 l l 100"6 100-4 

* - l  - 1  1 - 1  1 1 73"0 72"5 
- 1  - 1  l - 1  2 1 86"1 86-0 
- 2  - 2  1 - 1  1 1 71"0 70"9 
- 2  - 2  1 - 1  2 1 84"2 84"4 
- 1  0 1 0 2 1 83"8 83"5 
- 1  0 1 0 3 1 79"5 79"0 
- 2  - i  l 0 3 1 103-0 103"2 
- 2  - 1  1 0 2 1 107"2 107"6 

method, provided some half-dozen values of~0 are taken 
and the various close intersections are finally averaged, 
is accurate to about 1°. With the least-square compu- 
tational procedure, a rather better accuracy is obtain- 
able, particularly if tp angles are measured with a travel- 
ling microscope. The resultant cell angles are sensitive 
to errors in crystal setting. 

The resulting e, fl, y* values are used to calculate 
direct cell angles, and hence to obtain direct cell dimen- 
sions from Ca and ~b. At this stage a Delaunay reduc- 
tion (Delaunay, 1933, Patterson & Love 1957,) may 
be applied to obtain the conventional triclinic cell, and 
to ensure that the crystal truly lacks elements of sym- 
metry. 

M y  t h a n k s  a r e  d u e  to  v a r i o u s  c o l l e a g u e s  w h o  h a v e  

p r o d u c e d  i n c o n v e n i e n t  u n s t a b l e  c r y s t a l s ,  a n d  t o  s tu -  
d e n t s  w h o  h a v e  u s e d  t h e  g r a p h i c a l  m e t h o d  d u r i n g  t h e  
l a s t  t h r e e  y e a r s .  
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